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obtaining 10x ¼ 73:1414 " " ". We now multiply by a power of 10 to move one block to the
left of the decimal point; here getting 1000x ¼ 7314:1414 " " ". We now subtract to obtain
an integer; here getting 1000x# 10x ¼ 7314# 73 ¼ 7241, whence x ¼ 7241=990, a
rational number.

Cantor’s Second Proof

We will now give Cantor’s second proof of the uncountability of R . This is the elegant
‘‘diagonal’’ argument based on decimal representations of real numbers.

2.5.5 Theorem The unit interval 0; 1½ % :¼ x 2 R : 0 & x & 1f g is not countable.

Proof. The proof is by contradiction.Wewill use the fact that every real number x 2 0; 1½ %
has a decimal representation x ¼ 0:b1b2b3 " " ", where bi ¼ 0; 1; . . . ; 9. Suppose that there is
an enumeration x1; x2; x3 " " " of all numbers in [0,1], which we display as:

x1 ¼ 0:b11b12b13 " " " b1n " " " ;
x2 ¼ 0:b21b22b23 " " " b2n " " " ;
x3 ¼ 0:b31b32b33 " " " b3n " " " ;

" " " " " "
xn ¼ 0:bn1bn2bn3 " " " bnn " " " ;

" " " " " "

We now define a real number y :¼ 0:y1y2y3 " " " yn " " " by setting y1 :¼ 2 if b11 ' 5 and
y1 :¼ 7 if b11 & 4; in general, we let

yn :¼
2 if bnn ' 5;
7 if bnn & 4:

!

Then y 2 0; 1½ %. Note that the number y is not equal to any of the numbers with two decimal
representations, since yn 6¼ 0; 9 for all n 2 N . Further, since y and xn differ in the nth
decimal place, then y 6¼ xn for any n 2 N. Therefore, y is not included in the enumeration of
[0,1], contradicting the hypothesis. Q.E.D.

Exercises for Section 2.5

1. If I :¼ a; b½ % and I0 :¼ a0; b0½ % are closed intervals in R , show that I ( I0 if and only if a0 & a and
b & b0.

2. If S ( R is nonempty, show that S is bounded if and only if there exists a closed bounded interval
I such that S ( I.

3. If S ( R is a nonempty bounded set, and IS :¼ inf S; sup S½ %, show that S ( IS. Moreover, if J is
any closed bounded interval containing S, show that IS ( J.

4. In the proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S.

5. Write out the details of the proof of Case (iv) in Theorem 2.5.1.

6. If I1 ) I2 ) " " " ) In ) " " " is a nested sequence of intervals and if In ¼ an; bn½ %, show that
a1 & a2 & " " " & an & " " " and b1 ' b2 ' " " " ' bn ' " " ".

7. Let In :¼ 0; 1=n½ % for n 2 N. Prove that
T1

n¼1In ¼ 0f g.
8. Let Jn :¼ 0; 1=nð Þ for n 2 N. Prove that

T1
n¼1Jn ¼ ;.

9. Let Kn :¼ n;1ð Þ for n 2 N. Prove that
T1

n¼1Kn ¼ ;.
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10. With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have h 2 T1
n¼1In.

Also show that j; h½ # ¼ T1
n¼1In.

11. Show that the intervals obtained from the inequalities in (2) form a nested sequence.

12. Give the two binary representations of 3
8 and

7
16.

13. (a) Give the first four digits in the binary representation of 1
3.

(b) Give the complete binary representation of 1
3.

14. Show that if ak; bk 2 0; 1; . . . ; 9f g and if

a1
10

þ a2

102
þ % % % þ an

10n
¼ b1

10
þ b2

102
þ % % % þ bm

10m
6¼ 0;

then n ¼ m and ak ¼ bk for k ¼ 1; . . . ; n.

15. Find the decimal representation of & 2
7.

16. Express 1
7 and

2
19 as periodic decimals.

17. What rationals are represented by the periodic decimals 1:25137 % % % 137 % % % and
35:14653 % % % 653 % % %?
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If c> 1, then c1/n¼ 1þ dn for some dn> 0. Hence by Bernoulli’s Inequality 2.1.13(c),

c ¼ ð1þ dnÞn % 1þ ndn for n 2 N :

Therefore we have c& 1 % ndn, so that dn ' ðc& 1Þ=n. Consequently we have

jc1=n & 1j ¼ dn ' ðc& 1Þ 1
n

for n 2 N :

We now invoke Theorem 3.1.10 to infer that limðc1=nÞ ¼ 1 when c > 1.
Now suppose that 0 < c < 1; then c1/n ¼ 1=(1 þ hn) for some hn > 0. Hence

Bernoulli’s Inequality implies that

c ¼ 1

ð1þ hnÞn
' 1

1þ nhn
<

1

nhn
;

from which it follows that 0 < hn < 1=nc for n 2 N. Therefore we have

0 < 1& c1=n ¼ hn
1þ hn

< hn <
1

nc

so that

jc1=n & 1j < 1

c

! "
1

n
for n 2 N :

We now apply Theorem 3.1.10 to infer that limðc1=nÞ ¼ 1 when 0 < c < 1.

(d) limðn1=nÞ ¼ 1
Since n1=n > 1 for n > 1, we can write n1=n ¼ 1þ kn for some kn > 0 when n > 1.

Hence n ¼ ð1þ knÞn for n > 1. By the Binomial Theorem, if n > 1 we have

n ¼ 1þ nkn þ 1
2 nðn& 1Þk2n þ ( ( ( % 1þ 1

2 nðn& 1Þk2n;

whence it follows that

n& 1 % 1
2 nðn& 1Þk2n:

Hence k2n ' 2=n for n > 1. If e> 0 is given, it follows from the Archimedean Property that
there exists a natural number Ne such that 2=Ne < e2. It follows that if n % supf2;Neg then
2=n < e2, whence

0 < n1=n & 1 ¼ kn ' ð2=nÞ1=2 < e:

Since e > 0 is arbitrary, we deduce that limðn1=nÞ ¼ 1. &

Exercises for Section 3.1

1. The sequence (xn) is defined by the following formulas for the nth term.Write the first five terms
in each case:

(a) xn :¼ 1þ ð&1Þn; (b) xn :¼ ð&1Þn=n;

(c) xn :¼
1

nðnþ 1Þ
; (d) x :¼ 1

n2 þ 2
:
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2. The first few terms of a sequence (xn) are given below. Assuming that the ‘‘natural pattern’’
indicated by these terms persists, give a formula for the nth term xn.
(a) 5, 7, 9, 11, . . . , (b) 1=2, –1=4, 1=8, –1=16, . . . ,
(c) 1=2, 2=3, 3=4, 4=5, . . . , (d) 1, 4, 9, 16, . . . .

3. List the first five terms of the following inductively defined sequences.
(a) x1 :¼ 1; xnþ1 :¼ 3xn þ 1;
(b) y1 :¼ 2; ynþ1 :¼ 1

2 ðyn þ 2=ynÞ;
(c) z1 :¼ 1; z2 :¼ 2; znþ2 :¼ ðznþ1 þ znÞ=ðznþ1 % znÞ;
(d) s1 :¼ 3; s2 :¼ 5; snþ2 :¼ sn þ snþ1:

4. For any b 2 R, prove that limðb=nÞ ¼ 0.

5. Use the definition of the limit of a sequence to establish the following limits.

(a) lim
n

n2 þ 1

! "
¼ 0; (b) lim

2n

nþ 1

! "
¼ 2;

(c) lim
3nþ 1

2nþ 5

! "
¼ 3

2
; (d) lim

n2 % 1

2n2 þ 3

! "
¼ 1

2
:

6. Show that

(a) lim
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 7

p
! "

¼ 0; (b) lim
2n

nþ 2

! "
¼ 2;

(c) lim

ffiffiffi
n

p

nþ 1

! "
¼ 0; (d) lim

ð%1Þnn
n2 þ 1

! "
¼ 0:

7. Let xn :¼ 1=lnðnþ 1Þ for n 2 N .
(a) Use the definition of limit to show that limðxnÞ ¼ 0.
(b) Find a specific value ofK(e) as required in the definition of limit for each of (i) e¼ 1=2, and

(ii) e ¼ 1=10.

8. Prove that limðxnÞ ¼ 0 if and only if limðjxnjÞ ¼ 0. Give an example to show that the
convergence of ðjxnjÞ need not imply the convergence of ðxnÞ.

9. Show that if xn & 0 for all n 2 N and limðxnÞ ¼ 0, then limð ffiffiffiffiffi
xn

p Þ ¼ 0.

10. Prove that if limðxnÞ ¼ x and if x > 0, then there exists a natural numberM such that xn > 0 for
all n & M.

11. Show that lim
1

n
% 1

nþ 1

! "
¼ 0:

12. Show that limð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
% nÞ ¼ 0:

13. Show that limð1=3nÞ ¼ 0.

14. Let b 2 R satisfy 0 < b < 1. Show that limðnbnÞ ¼ 0. [Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]

15. Show that lim
$
ð2nÞ1=n

%
¼ 1.

16. Show that limðn2=n!Þ ¼ 0.

17. Show that limð2n=n!Þ ¼ 0. [Hint: If n & 3, then 0 < 2n=n! ' 2 2
3

& 'n%2
.]

18. If limðxnÞ ¼ x > 0, show that there exists a natural number K such that if n & K, then
1
2x < xn < 2x.
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